
 Version 1.1

Resource Monitoring

Abstract

Service providers must keep a watchful eye on the health of system
resources to prevent inconvenient and costly service outages.
Unfortunately, active monitoring of system resources can often be
just as inconvenient and costly. The purpose of this paper is twofold:
(1) discuss the requirements for monitoring system components,
and (2) describe a statistical monitoring architecture for critical
resources that is both persistent and minimizes the use of system
resources.

Resource Monitoring: Contents

 2

Copyright © 2002, Intel Corporation. This material may be distributed only subject to the terms and conditions set
forth in the Open Publication License, v1.0. See <http://www.opencontent.org/openpub/>.

§Names and brands may be claimed as the property of others.

Resource Monitoring: Contents

 3

Contents
Contents ...3

Introduction..3
Flawed Approaches to Monitoring..3

Non-production Components ...3
Too Many System Resources Required...3
Source-Level Integration ..3

Requirements ..3

Analysis..3
System Resources ..3
Automated Agents ..3
Statistics and Monitors ..3
Summary..3

Options...3

Implementation ..3
Resource Monitor Architecture ...3
Resource Monitor Daemon Design ...3

Daemon Object Model..3
Class Hierarchy ..3

Application Interfaces ..3
Browsing ...3
Statistic ...3
Monitor..3
Monitor Configuration and Control Structures..3

Subsystem Interfaces...3
Process Flows...3
Consumer Applications..3
TODOs..3

Conclusion ...3

Appendix A: References ..3

Appendix B: Abbreviations, Acronyms and Definitions ...3

Resource Monitoring: Introduction

 4

Introduction
Systems hosting critical subscriber services cannot fail. The impact of failed systems is lost revenue, reduced
subscriber satisfaction and subscriber turnover. All of these outcomes are costly for the service provider.

To reduce the potential for system failure, carriers and service providers use automated software and hardware
agents that sense resource conditions, generate event indications, review system and network management
policies, and select avoidance or recovery actions that will keep their services running at the highest availability
level possible. Hardware, driver, kernel and application resources are all within the accessible scope of the
operating system. Software sensors, or monitors, are often developed to sense changes in status or to report
values of statistics kept by the resource. These sensors form the foundation of effective resource monitoring.

This paper will explore approaches to resource monitoring, compare various resource monitoring
implementations, and present the architectural details of the Resource Monitor implementation.

Flawed Approaches to Monitoring
Software components that monitor system resources are not novel. Many software systems contain components
that monitor system resources, but many of these implementations are flawed in some way.

Non-production Components
Since monitoring may cause sub-optimal system performance, some implementations require that a separately
compiled version of the resource software be used when monitoring is needed. This implies that the monitoring-
enabled code is probably not present under “production”, or normal, use. Unfortunately, service providers are
keenly interested in abnormal conditions that occur during production use of the system. If the monitoring is not
active during production use, then event indications cannot be generated, nor can data be captured for offline
analysis.

Too Many System Resources Required
In some cases, monitoring software components are not wise users of system resources. Rather than develop a
design that is cognizant of system resource use, many developers take the “non-production” component
approach so that the production system performance is not affected. In other cases, the monitoring may be
embedded in the resource software implementation and does not provide any tuning capabilities.

Source-Level Integration
In many cases, the monitoring software component was developed for a particular type of system resource—for
example, disk, network, or memory—or was developed as part of a single, specific network management
framework, such as the Simple Network Management Protocol (SNMP) or Common Diagnostics Model (CIM).
While the implementation may work well for the single resource type, it poses a problem for (1) system integrators
that want to monitor all of the system resources from one management application, or (2) multiple applications
that need access to a single resource type. Also, if a new algorithm for monitoring is required, the service
provider or integrator must approach a third software development party to discuss adding the new functionality.
This change not only increases time-to-market but needlessly introduces possible faults into the system. This
same access to the source code would be needed to add new resource types to be monitored.

Resource Monitoring: Introduction

 5

Requirements
Given these potential problems, a resource monitoring software architecture is needed that:

• Monitors resources using production components.

• Uses system resources wisely.

• Allows runtime extension of monitoring to include new resource types at the binary component level, both
at startup and during the life of the monitoring process.

Resource Monitoring: Analysis

 6

Analysis
Resource monitoring makes up half of the foundation of the classical fault management model (see Figure 1).
Sensors, or monitors, are data collectors that generate event indications, or events, for use by fault managers.
Fault managers may be in the form of user applications that present the event data and allow the user to take
action manually, or may be implemented as automated agents that take selected actions based on pre-configured
policies related to the event data.

Figure 1 Classical fault management architecture

Fault Manager Policies

ActionsSensors

Event Indications Action Selections

Northbound
Escalation

Network
Operations

Center

System Analyst /
Developer

System Resources
Critical system resources can be found at all levels of the system but in each case, a software component must
implement the monitoring function so that event indications can be generated. System resources can be broken
down into the following categories:

• Hardware Resources – Typically, a driver will provide the programming interface needed to access
statistics managed within hardware. In some cases, software components within the operating system
track usage, as in the case of memory usage or CPU usage. Examples of hardware that may track
statistics internally are:

o Network adapters

o System baseboards

o Central processing units (CPUs)

• Operating System Resources – The operating system manages logical partitions of hardware resources.
These “logical” resources provide insight into potential operating system problems. Examples of
operating system resources are:

Resource Monitoring: Analysis

 7

o Buffers

o File systems

o Memory

o Processes

• Application Resources – Application services may also maintain counters that indicate the health of the
service. Applications are sometimes instrumented with libraries for retrieving this information or may
keep status information in files that are updated regularly. Examples of application services are:

o Protocol gateways, such as H.323 gateways and gatekeepers, Session Initiation Protocol (SIP)
proxy servers

o Media applications, such as Internet servers

Since monitors are implemented in many levels of a system, it becomes difficult to write maintainable applications
that perform fault management. To facilitate the development of maintainable fault management applications, an
architecture is needed that provides (1) an application interface that abstracts the monitoring functionality, (2) an
out-of-process service that performs efficient monitoring on behalf of one or more applications simultaneously,
and (3) a programming interface that allows the addition of new resource types to be monitored.

Automated Agents
Automated agents are typically components of a network management solution and are often based on standard
protocols for management, such as the Distributed Management Interface (DMI), CIM, or SNMP. Each of these
standards defines conventions for describing manageable entities, attributes and controls presented by those
entities, and event indications generated by those entities. To facilitate the development of fault management
agents that conform to one of these protocols, an architecture for monitoring is needed that models the monitoring
concepts in a fashion that is easily adaptable by these protocols.

Statistics and Monitors
A component will often have the capability to generate unsolicited event data whenever a condition exists that
needs attention. However, often the component has a measurable aspect that, if monitored, can indicate the
existence or probability of a problem, but no proactive mechanism is available to initiate the event. In these
cases, a software facility is needed that can monitor the value of a statistic and generate events when the value of
that statistic meets a specified condition.

Statistics are measures associated with a system component. Statistic types range from simple counters to
more complex, “second-order” statistics.

Counters are integer values that are incremented or decremented in one direction. An odometer in a car is an
example of a counter—as the car is driven, the odometer increments the odometer once for every mile (or
kilometer) the car moves. In networking protocols, counters are often used to count number of packets
transmitted or number of packets received with errors.

Gauge statistics are numeric values that are incremented and decremented so that values move up and down
over time. Temperature, speed, and voltage are all measured with gauge statistics.

Second-order statistics are those values that are derived from measurements from more than one sensor, from
data collected over time, or from components where it is impossible or infeasible for the component to provide the
statistic as a sampled value.

Monitors are components that observe the value of a statistic on periodic intervals and test the value of the
statistic to see if it has reached a value that is of interest. If so, a monitor is configured to take an action. A
thermostat is an example of a monitor—when the temperature of a room reaches a certain temperature, the
thermostat is programmed to switch on an air conditioner or a heater.

Monitoring algorithms vary. A threshold monitor will test the value of a statistic and generate an event notification
whenever the statistic value crosses some preset threshold value. Given the nature of this algorithm, it is most
applicable to gauge statistics—those whose value moves up and down. Likewise, the watermark monitor type is

Resource Monitoring: Analysis

 8

appropriate for gauge statistics since it records the highest or lowest value of a statistic within its active lifetime.
For counters, monitoring algorithms that test conditions based on a rate of change, like the “leaky bucket”
algorithm, are applicable. A leaky bucket monitor compares the delta in a counter value to an expected delta,
over a sliding window of counter increments, and generates an event when the actual delta exceeds the expected
delta.

A monitoring architecture should be based on two basic object classes, statistics and monitors. A monitor’s
algorithm should be available to associate with any applicable statistic. For example, a user should be allowed to
activate a threshold monitor for any gauge statistic available within the scope of the monitoring facility.

The differentiation of statistics and monitors is important when designing reusable software components for a
resource monitoring system. As the concepts of monitoring become more complex, it is crucial to model them
accurately for maximum reuse.

For example, consider the “ratio” concept. A ratio is a comparison of two values. In some monitoring cases, the
ratio may be the value of a statistic over a constant value. In other cases, the statistic of interest may be the ratio
of two currently monitored statistics. If the implementer chose to model a new type of monitor as the ratio of two
specific statistics, then the new monitor would have limited application. On the other hand, if this new “ratio
statistic” was modeled as a second-order gauge statistic, then existing monitor implementations would be
immediately usable.

Summary
In summary, the requirements of a robust resource monitoring facility are:

• To present an interface that abstracts statistical information and monitors implementations.

• To present an interface that extends capabilities to new resource types at runtime.

• To present event mechanisms via standard event management components.

• To present an object model that maps easily into network management frameworks.

Resource Monitoring: Options

 9

Options
Many Linux§ system management components address aspects of resource monitoring and, in particular,
statistics monitoring. While all of these components are valuable elements of a complete system management
suite, none achieve all of the key requirements for a resource monitoring service as presented in the previous
summary. The following is a review of current monitoring facilities, and presents information about the features of
each, as well as the location of the open-source project.

Resource Monitor

• The Resource Monitor is an open-source resource monitoring implementation. The “Implementation”
section of this paper describes the Resource Monitor in detail. The following bullets summarize the
functionality of the Resource Monitor.

• A daemon service that tracks resource statistics and monitors on behalf of applications

• User APIs: shell/XML utility; C++/C libraries

• User choice of daemon-resident or kernel-resident monitoring (kernel-resident via drivers that are
implemented to the Open Systems Development Lab Carrier Grade Linux Working Group (OSDL CGL
WG) Driver Hardening APIs)

• Open source project information is located at https://sourceforge.net/projects/resourcemntrd/)

Multi-Router Traffic Grapher§ (MRTG)

• Graphs Ethernet network device statistics derived from the standard Internet Engineering Task Force
(IETF) SNMP Resource Monitoring Management Information Block (RMON MIB)

• From the MRTG website:

The Multi Router Traffic Grapher (MRTG) is a tool to monitor the traffic load on network-links. MRTG
generates HTML pages containing graphical images which provide a LIVE visual representation of this
traffic.

• Accesses data provided by SNMP subagents for the RMON MIB

• Open source project information is located at http://people.ee.ethz.ch/~oetiker/webtools/mrtg/

• Further investigation required to determine if MRTG can access the Resource Monitor MIB

KSysGuard§

• User interface for viewing system statistics; some monitoring and visual alarm capability; no event
indication propagation capability

• From the KSysGuard website:

KSysGuard is the KDE Task Manager and Performance Monitor. It features a client server architecture
that allows monitoring of local as well as remote hosts. The graphical front end uses so called sensors
to retrieve the information it displays.

• Is distributed with the KDE development environment

• Has sensors for /proc data (memory, task, CPU, etc.)

Open source project information is located at www.kde.org. Also, see
http://docs.kde.org/2.2.2/kdebase/ksysguard/ for documentation on KSysGuard itself.

• Resource Monitor-based sensors could be used to extend coverage of the KSysGuard user interface
application

MON§

• Described as a resource monitor; better categorized as a fault manager implementation; provides a
plug-in architecture for event sensor and action plug-ins.

• From the MON home page:

Resource Monitoring: Options

 10

mon is a general-purpose scheduler and alert management tool used for monitoring service availability
and triggering alerts upon failure detection.

• Open source project information is located at http://ftp.kernel.org/software/mon/

• Would benefit from events generated by the Resource Monitor

– A MON plug-in for Resource Monitor events would be useful

– A MON plug-in for any POSIX 1003.25 log event would be useful

Performance Co-Pilot§ (PCP)

• Similar architecture to the Resource Monitor; features a collection daemon, plug-in metric access
components, programmatic access for applications, and metric data persistence.

• Key differences between PCP and the Resource Monitor:

– Scope of monitoring

• PCP provides a framework for collating data from many servers in a network, especially
beneficial for collating metrics gathered from members of a cluster.

• Resource Monitor’s scope is server-level only.

– Event generation

• PCP generates events from data collected at a central console or management server
collection center.

• Resource Monitor generates events locally on the managed server. Fault management
and/or cluster manager applications can see events and take action locally, without
involving remote management applications.

– Data persistence

• PCP persists data over the network to a central collection repository. This supports a
key feature of PCP which is “retrospective analysis.” PCP has agents that observe data
over time and as the data is collected, determines fault conditions and invokes user
configured actions.

• Resource Monitor provides a plug-in interface for collecting statistic samples. The plug-
in can persist the data in any means it chooses: binary, character, formatted, and so
forth. The system integrator must provide a mechanism for forwarding collected data to
a central site.

• From the PCP home page:

Performance Co-Pilot (PCP) is a framework [that] supports system-level performance monitoring and
performance management.

The services offered by PCP are especially attractive for those tackling harder system-level
performance problems. For example this may involve a transient performance degradation, or
correlating end-user quality of service with platform activity, or diagnosing some complex interaction
between resource demands on a single system, or management of performance on large systems with
lots of "moving parts".

The distributed PCP architecture makes it especially useful for those seeking centralized monitoring of
distributed processing (e.g. in a cluster or webserver farm environment), especially where a large
number [of] hosts are involved.

• PCP began life as a Silicon Graphics, Inc. (SGI) product. In February 2000, SGI released the
infrastructure portion of the framework as open source under the GNU Public License (GPL), maintaining
the open source on an SGI site (http://oss.sgi.com/projects/pcp/).

Figure 2 Linux system management architecture and components

Resource Monitoring: Options

 11

Linux
Management
Kernel
Support

Linux
Management
Services

System
Management
Models/
Abstractions

Fault Management
Applications

User Interfaces

Event
Notifications

Diagnostics Management

Virtual File System for Resource Management Access

Device DriverDevice Driver Device Driver

POSIX Event
Management/Logging

MON

Event
Generation

Diagnostic API

Programmable
Actions

User Interface

Statistics Management

Resource Monitor daemon

Resource Monitor Subsystem Libs

/proc filesystem Other
Subsystems

KSysGuard

SNMP Master Agent
(e.g. NET-SNMP)

RM
Subagent

RMON
SubAgent

MRTG

PCP agent
(Node data collector)

RM
Plug-inPlug-ins

PCP central collector
and inference engine

(Client or system-
based)

CIM Object Manager
Logical
Device
Sensor

Providers

CIM CDM
Provider

Linux Event
Indication
Provider

Resource Monitor API

These applications all form part of a complete system fault management solution. Figure 2 illustrates where each
of these components would be used in a fault management system.

Resource Monitoring: Implementation

 12

Implementation
Given the requirements reviewed in the “Analysis” section of this paper, the recommended implementation for
monitoring critical resources is the Resource Monitor. The Resource Monitor provides the following capabilities:

• Monitors resources accessed through

o Drivers and other loadable modules

o Kernel

o User-space applications

• Generates events via the POSIX Standard 1003.25 Event Logging/Management Facility (evlog).

• Supports multiple applications simultaneously monitoring multiple resources.

• Allows new resource types to be added dynamically.

• Allows multiple consumers and monitors:

o Each consumer application can access any statistic.

o Each consumer application can create multiple, independent monitors for any single statistic.

• Persists sampled statistic data through data capture plug-ins.

Resource Monitor Architecture
The Resource Monitor architecture recognizes the following elements:

• Consumer applications: software components that use the Resource Monitor application interfaces to
monitor system resources. Consumer applications may be user-driven interfaces, autonomous fault
managers, or network management agents.

• Resources: any identifiable, manageable parts of a system. For Resource Monitor, a resource is any
entity which presents measurable attributes through a software interface.

• Subsystems: software components that represent a group of like resources. Each resource in a given
subsystem is described by the same set of statistics.

• Statistics: measurable attributes of a resource.

• Monitors: active components that are configured to observe the value of a statistic at regular intervals
and report event data based on a test condition for the observed value.

• Events: indications that a monitor generates when a statistic value meets a test condition of the monitor.

• Data persistence libraries: software components that persist sampled statistic values in a format
expected by a class of applications.

Resource Monitoring: Implementation

 13

Figure 3 Resource Monitor architecture

Consumer Application

Resource Monitor Daemon

Resource Monitor Library

Monitor Configuration and Control

Kernel
Subsystem

Library

Common
Statistics

Subsystem
Library

File System
Subsystem

Library

Plain Text
Data

Persistence
Library

XML
Data

Persistence
Library

POSIX Event
Manager

Historical
data

Historical
data

Threshold Events

XML
Parser

Spreadsheet
application

Import Data Parse Data

Interprocess
adapter

Receive Data

Interprocess
Data

Persistence
Library

Time-stamped Statistic Data

Event DataEvent Filter/
Query Data

Drivers, kernel, other subsystems

Graphical User Interface

Event Mgmt
Library

Threshold Events

rmxml
utility

The Resource Monitor is comprised of the following components, as shown in Figure 3:

• User interfaces

o Resource Monitor libraries, C++ and C libraries which provide programmatic access and control
of statistics and monitors exposed through the Resource Monitor.

o rmxml, a Linux utility that allows the same access and control of monitoring for shell script
applications using extensible markup language (XML) syntax for identifying statistics and for
establishing monitor parameters.

• Resource Monitor daemon

o A Linux daemon process that receives commands from applications and either dispatches the
monitoring requests to lower-level software or creates and maintains monitors on behalf of the
application. The commands are received via a socket interface supported by the Resource
Monitor library.

o The daemon manages two classes of objects, statistics and monitors.

Resource Monitoring: Implementation

 14

• Subsystem libraries

o Subsystem libraries are dynamically linked libraries that provide resource-specific
implementations for statistic and monitor classes providing access for the Resource Monitor
daemon to any resource in the system.

o Subsystem libraries implement the Resource Monitor daemon’s access to statistics and monitors
located in all system components, drivers, kernel modules, and applications.

• Event Manager

o The Resource Monitor conforms to the event capture and event subscriber interfaces of the
POSIX 1003.25 event management definition and by default uses the implementation “evlog”.
The Resource Monitor daemon and subsystem drivers that have been hardened to the CGL WG
Driver Hardening specifications both log events via the “evlog” facility. The POSIX event
logging interfaces allow applications to create persistent event queries that will call back to the
application when events matching the query are processed.

• Data Persistence Library

o The Resource Monitor exposes a plug-in interface that allows data collected from subsystem
library-accessed statistics to be persisted for offline use. For example, a data persistence library
could write the data in a compact, binary format to a disk drive-based file or could forward the
data over a network to the network operations center (NOC) for offline analysis.

The following sections provide details about the internal design of the Resource Monitor daemon and the
interfaces between components.

Resource Monitor Daemon Design

Daemon Object Model
The Resource Monitor daemon is an object-oriented service. The core object classes are monitor and statistic.
For each statistic instantiated by the Resource Monitor daemon, the daemon can associate multiple monitors as
requested by applications.

For monitors that the application requests to be maintained in user space, the Resource Monitor daemon
coordinates sampling of the associated statistics such that a statistic is only sampled once per sampling interval
regardless of the number of associated monitors.

For monitors that the application requests to be maintained “in-line”, the Resource Monitor daemon uses the
monitor class as a record of the settings and status of the in-line monitor.

Figure 4 Resource Monitor daemon object model

 Statistic
virtual int
(rmValue
time_t

virtual
resetCounterVal
(rmValue

Statistic
virtual int
(rmValue
time_t

virtual
resetCounterVal
(rmValue

0..n

Monitor Monitor

Resource Monitoring: Implementation

 15

Class Hierarchy
To allow the monitoring facility to be extended for any type of resource type or statistic type, the Resource Monitor
daemon defines the statistic class as a virtual class. The methods for retrieving the statistic values are defined as
pure virtual functions, such that implementers of the class must provide an implementation for the function.
Statistics are implemented by subsystem libraries. Subsystem libraries are dynamically-linked libraries that
provide implementations for statistic and monitor classes used by the Resource Monitor daemon.

Figure 5 Resource Monitor daemon class hierarchy for statistic

e100packetrxd
int readValue (rmValue
*a_value, time_t
a_timestamp)

int resetCounterValue
(rmValue *val)

e100packetrxd
int readValue (rmValue
*a_value, time_t
a_timestamp)

int resetCounterValue
(rmValue *val)

kernAvailMem
int readValue (rmValue
*a_value, time_t
a_timestamp)

int resetCounterValue
(rmValue *val)

kernAvailMem
int readValue (rmValue
*a_value, time_t
a_timestamp)

int resetCounterValue
(rmValue *val)

Statistic
virtual int readValue
(rmValue *a_value,
time_t a_timestamp)=0

virtual int
resetCounterValue
(rmValue *val)=0

Statistic
virtual int readValue
(rmValue *a_value,
time_t a_timestamp)=0

virtual int
resetCounterValue
(rmValue *val)=0

Application Interfaces
The application, or consumer, interfaces are defined in the Resource Monitor header files. The following sections
highlight portions of the user interface. Consult the source site for the full interface and latest revisions.

Browsing
The following structures are used by the user application to navigate and discover manageable objects in the
Resource Monitor’s scope.

 size_t getSubsystemCount();
 int getAvailableSubsystems(rmSubsystemInfo *buffer, const size_t size);
 int getActiveResources(const RMuid guid, rmResourceInfo *buffer, const
size_t size);
 int getAvailableStatistics(const RMuid guid, rmStatisticInfo *buffer,
const size_t size);
 size_t getMonitorCount();
 int getMonitors(rmMonitorInfo *buffer, size_t *size);
 int getSubsystemInfo(const RMuid Subsystem, rmSubsystemInfo *buffer);
 int getResourceInfo(const RMuid Subsystem, const rmID id, rmResourceInfo
*buffer);
 int getStatisticInfo(const RMuid Subsystem, const rmID id,
rmStatisticInfo *buffer);
 rmString getSubsystemDescription(const RMuid Subsystem, const
rmDescriptions which);

Resource Monitoring: Implementation

 16

 rmString getResourceDescription(const RMuid Subsystem, const rmID id,
const rmDescriptions which);
 rmString getStatisticDescription(const RMuid Subsystem, const rmID id,
const rmDescriptions which);
 int getResourceID(const RMuid Subsystem, const rmString shortdescription,
rmID *id);
 int getStatisticID(const RMuid Subsystem, const rmString
shortdescription, rmID *id);

Statistic
The following structures are used by the user application to access resource statistics.

 int getCurrentValue(const rmStatisticKey id, rmValue *value);
 int getUpperBound(const rmStatisticKey id, rmValue *value);
 int resetCounterStatistic(const rmStatisticKey id, const rmValue
*value);

Monitor
The following structures are used by the user application to create monitors and manage their activation.

 rmHandle createMonitor(const rmMonitorConfiguration &config,
rmMonitorControl *control);
 rmHandle accessMonitor(const RMuid MonitorId);
 int deleteMonitor(const rmHandle handle);
 int setMonitorControl(const rmHandle handle, const rmMonitorControl
&control);
 int getMonitorControl(const rmHandle handle, rmMonitorControl *control);
 int setMonitorConfiguration(const rmHandle handle, const
rmMonitorConfiguration &config);
 int getMonitorConfiguration(const rmHandle handle,
rmMonitorConfiguration *config);
 int startMonitor(const rmHandle handle);
 int stopMonitor(const rmHandle handle);
 int resetMonitor(const rmHandle handle);
 int pauseNotification(const rmHandle handle);
 int resetNotification(const rmHandle handle);
 int getMonitorState(const rmHandle handle, rmMonitorState *status);
 int getMonitorInfo(const rmHandle handle, rmMonitorInfo *buffer);
 rmString getMonitorDescription(const rmHandle handle, const
rmDescriptions which);
 int setMonitorDescription(const rmHandle handle, const rmDescriptions
which, const rmString description);

Monitor Configuration and Control Structures
The following structures are used by the user application to configure monitor test conditions and to control
monitor event generation.

typedef struct
{
 /// used to switch on the typeConfiguration union
 enum rmMonitorType monitorType;
 /// the triplet that identifies a specific instance of a statistic.
 rmStatisticKey statisticKey;

Resource Monitoring: Implementation

 17

 /// A statistic that provides an upperbound, normally gauges, the
percentage of
 /// the statistic is monitored when the monitor transformation is \a
rmPercent.
 /// With \a rmPercent, monitors can not be created for statistics when
no upper bound is available.
 /// The valid threshold values are 0 .. 100 when the \a rmPercent
transform is used.
 /// \a rmChange monitors the value of the change in a statistic reading.
 /// Since the change can be positive or negative,
 /// the \a thresholdValue is always assumed to be a signed.
 /// \a rmChange monitors the largest increase in a statistic value in
rmHighWatermark monitors.
 /// \a rmChange monitors the largest decrease in a statistic value in
rmLowWatermark monitors.
 /// \note Since statistic transforms effectively turn any statistic into
a gauge, the Leaky Bucket monitor
 /// should not be used with transforms because it only works predictably
with counters. Data capture
 /// only captures the raw reading, not the transformed value.
 enum rmStatisticTransform statisticTransform;
 /// monitor type specific configuration parameters.
 union {
 rmThresholdConfiguration threshold;
 rmWatermarkConfiguration watermark;
 rmLeakyBucketConfiguration leakyBucket;
 // for configuration of future monitor types
 } typeConfiguration;
} rmMonitorConfiguration;

typedef struct
{
 /// used to switch on the typeControl union.
 enum rmMonitorType monitorType;
 /// specifies the inline or daemon location to use.
 enum rmMonitorLocation location;
 /// The monitor uuid will be part of an event record to uniquely
identify this
 /// monitor. The resource monitoring facility generates this unique ID
when
 /// a monitor is created if the uid is clear and is returned when
 /// ResourceMonitor::rmCreateMonitor is successful,
 /// else the provided uuid is used.
 /// \sa clearMonitorUID setMonitorUID
 rmUID uid;
 /// the resource monitoring facility registers data capture libraries
using unique ID's.
 /// Each library provides a different storage method.
 /// Clearing this field indicates that no data capture will be done for
this monitor
 /// \sa clearDataCapture setDataCapture TextDataCapture

Resource Monitoring: Implementation

 18

 /// \note Data capture only captures the raw reading, not the
transformed value.
 rmUID dataCapture;
 /// seconds to monitor once started. The daemon automatically stops
monitoring at the end of the interval.
 rmTimeInterval monitoringInterval;
 /// seconds between each sample taken by the monitor: 60 = 1
sample/minute, etc.
 rmTimeInterval monitoringRate;
 /// microseconds between each sample taken by the monitor added to \a
monitoringRate
 /// Daemon monitors only use \a monitoringRate.
 rmMicroTimeInterval microMonitoringRate;
 /// monitor type specific control parameters.
 union {
 rmThresholdControl threshold;
 rmLeakyBucketControl leakyBucket;
 // for control of future monitor types
 } typeControl;

} rmMonitorControl;

Subsystem Interfaces
Subsystem libraries are implemented as dynamically linkable C++ libraries (.so suffix). The subsystem libraries
may be installed anywhere in the system. An entry in the file /etc/opt/resourcemon/rmtab is needed to
indicate the location of the library location to the Resource Monitor daemon.

To expose a single subsystem to the daemon, the library provides an implementation for the virtual class
ISubsystemMonitor. The Resource Monitor daemon opens all subsystem libraries found in
/etc/opt/resourcemon/rmtab and constructs an instance of the ISubsystemMonitor class. In the
constructor, the subsystem library developer uses the Resource Monitor daemon’s static registration methods
(IRMRegistration) to register any statistics, monitors, and/or resources provided by the subsystem library.

Process Flows
Figures 6 and 7 illustrate how a user application uses the Resource Monitor to create monitors and receive
monitoring events.

Resource Monitoring: Implementation

 19

Figure 6 Consumer application creates and starts a daemon-based monitor

daemon

statistic

driver interfaceconsumer
application

“create”
constructor

constr
monitor

Subsystem Monitor Library

checkMonitor(timestamp)

checkMonitor(timestamp)

Cont.

“start”

readValue(timestamp)

readValue(timestamp)

Figure 7 A threshold event is generated and received by an application

POSIX event
manager

statistic

driver
interface

consumer
application

“subscribe” monitor

Subsystem Monitor Library

checkMonitor()

checkMonitor()

“threshold
exceeded”

readValue()

readValue()

daemon

checkMonitor()
readValue()

application
call-back

Figure 8 shows how multiple applications can create monitors with different configurations for the same statistic.

Resource Monitoring: Implementation

 20

Figure 8 Multiple applications monitoring a single statistic

consumer
application POSIX event

manager statistic driver
interface

consumer
application

monitor
daemon monitorconsumer

application monitor

“subscribe” checkMonitor(timestamp=“4”)
readValue(timestamp=“4”)

checkMonitor(timestamp=“4”)
readValue(timestamp=“4”)

checkMonitor(timestamp=“4”)
readValue(timestamp=“4”)

“threshold
exceeded”application

call-back

read value

Consumer Applications
An SNMP subagent implementation is available that exposes the Resource Monitor’s capabilities via an SNMP
MIB.

TODOs
As with any open-source project, there are enhancements that are needed but not yet developed. The following
is a list of components that would be valuable additions to Resource Monitor:

• Network Management Framework integration

o CIM Sensor Providers would expose the monitoring capabilities to applications using the CIM
framework to access management capabilities. The CIM classes for sensors and indications
were used as models for developing the Resource Monitor daemon class infrastructure.

• New second-order statistics and monitor types

• New subsystem monitoring libraries for resource types not accessible today

o TCP/IP stack subsystem library

o Other protocol stack subsystem libraries

• Integration with existing open-source Linux management tools

o KSysGuard – link Resource Monitor monitoring capability to KSysGuard visual objects

o MON – develop MON event plug-ins for evlog, in general, and Resource Monitor monitoring
events, specifically

o PCP – develop a node data collector plug-in that utilizes Resource Monitor subsystem libraries
for statistic exposure and data collection

Resource Monitoring: Conclusion

 21

Conclusion
The Resource Monitor is flexible, extensible, and practical. It allows the user to choose where monitoring will
occur, either in driver or kernel time or in user/application time. The Resource Monitor also provides many
choices for application development—C++, C or shell script. In addition, it can be extended to support new
resource types via a dynamic library plug-in interface and supports all drivers hardened to the CGL WG driver
hardening specifications.

Resource Monitoring: Appendix A: References

 22

Appendix A: References
Device Driver Hardening Design Specification, June 2002

Linux Event Logging for Enterprise-Class Systems, Open Source Project “evlog”: http://evlog.sourceforge.net/

NET-SNMP, Open Source Project for SNMP Monitoring: http://net-snmp.sourceforge.net/

OSDL Carrier Grade Linux Working Group: http://www.osdl.org/projects/cgl/

CGL Developer Sites: http://developer.osdl.org/

Distributed Management Task Force, Inc.: http://www.dmtf.org/

The Internet Engineering Task Force: http://www.ietf.org/

Appendix B: Abbreviations, Acronyms and Definitions

Abbreviation Description
API Application Programming Interface

CDM Common Diagnostics Model, a design for providing common
access methods for diagnostics across CIM managed elements

CIM Common Information Model, Distributed Management Task Force
system management object model standard

CGL Carrier Grade Linux

CGL WG Carrier Grade Linux Working Group

CPU Central Processing Unit

DMI Desktop Management Interface, DMTF standard for management

IETF Internet Engineering Task Force

lib library, an object component that is linked into an application to
provide an interface or service access

MIB Management Information Block, an abstraction of management
data access used in SNMP

northbound Traditional description used by carriers to describe the link from a
network element (equipment) to a network operations center
(NOC). A northbound link ties the network element into the
management plane of the network architecture.

OSDL Open Systems Development Lab

POSIX Portable Operating System Interfaces standard

RMON SNMP Remote Monitoring MIB

SNMP Simple Network Management Protocol (Internet Engineering Task
Force standard)

XML eXtensible Markup Language

